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Abstract: Tourism has become very important in international commerce and also represents one of the main sources of 

income for some developing countries in the world. It is the act of people travelling and staying in a place outside their usual 

environment for leisure, business or other purposes, and this may include sightseeing, camping, retreats, etc Tourism is one of 

the key economic growth contributors and has contributed towards complete growth and development of Australia by bringing 

numerous economic value and benefits to her, and also building her brand value, image and identity. This paper seeks to 

generate a periodic autoregressive PAR model that could be used to make reliable forecast for tourism in Australia. Periodic 

autoregressive models are for seasonally observed data, particularly quarterly and monthly. Its’ parameters take different values 

across the seasons. The data used in this work was extracted from the official website of the Australian Bureau of Statistics 

(ABS), (www.abs.gov.au). It consists of monthly historical data of the number of short term visitors in Australia from January 

1998 to December 2017 and was analysed using R- statistical software. The result revealed the order of the PAR model, and 

also verified that there is periodic variation (periodicity) in the tourism data. It was also verified that there is existence of single 

unit root and periodic integration which led to the fitting of periodic integrated autoregressive (PIAR(2)) model as the suitable 

model for the Australian tourism data. Finally, the residual generated from the model was subjected to statistical test and it 

showed a white noise behavior. Based on these findings, it is concluded that periodic autoregressive time series model can be 

used to generate reliable forecast for Australian tourism data. Further research on the stochastic nature and seasonality of 

Australian tourism data was recommended. 
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1. Introduction 

Tourism is the act of people travelling and staying in a 

place outside their usual environment for leisure, business or 

other purposes, and this may include sightseeing, camping 

and retreats [21]. Tourism may also involve people travelling 

to a place to learn about the history or culture of the 

destination or even to learn about the people who live there; 

people from a particular region travelling to a different region 

to have a taste of an entirely different environment (for 

example, people from a colder region travel to a warmer 

region to relax in the sun); people travelling in order to get 

engaged in an event or activity which they could not readily 

access at home; or people visiting families and friends in 

another region or going on some form of pilgrimage etc. [21] 

Tourism helps improve the economy of a place. This can 

be seen majorly in areas such as transportation (roads, 

airlines, railways and water transportation), and 

accommodation (hotels, camping grounds, parks, restaurants, 

café and bars). Tourism also attracts investors to a particular 

place thereby boosting the foreign investment of that region. 

Over the years, tourism has seen a continuous growth and 

increasing diversification to emerge as the world’s fastest 

growing economic sector for developed countries [1, 2]. 

Currently, the business volume of tourism equals or even 

surpasses those of oil exports, food production or automobile 

merchandise. Tourism has become very important in 

international commerce and also represents one of the main 
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sources of income for many developed and developing 

countries in the world including Australia [1, 2]. 

In Australia, tourism is an important component of their 

economy. Australian tourism satellite account recorded that 

there were about 7.4 million tourists in Australia, specifically 

in the 2015 calendar year [1]. In the same period, over 

580,800 were employed in Australia by tourism alone, and 

this constitutes about 5% of the Australian workforce as at 

then. Also, according to the Australian tourism satellite 

account, tourism represented 3.0% of the Australia’s GDP 

which was evaluated at about $47.5 billion [2]. Also, as at 

June 2019, it was reported that tourism increased by 3% 

having a record of 8.6 million tourists. 

The objective of this paper is to model tourism in Australia 

using Periodic Autoregressive model (PAR). This involves 

fitting a periodic autoregressive model of order p, PAR(p), 

selecting the periodic autoregressive lag order parameter, 

testing for periodicity (periodic variation) using the data, 

testing for unit root and periodic integration, fitting a 

periodically integrated autoregressive model PIAR, and 

making forecast. 

According Osborn and Osborn and Smith, the introduction 

of periodic models into economics dated back to the late 

1980 [16, 15]. Then, the focus was on describing trending 

consumptions and income data and the use of periodic 

models for out-of-sample forecasting. These studies did not 

include a formal analysis of the type of trends, simply 

because the relevant tools were developed in the mid-1990s 

[3, 4]. Other new developments were extensions to 

multivariate periodic models for trending data and formal 

model selection strategies. 

Over the years, the study on periodic autoregressions has 

improved significantly. It has been used frequently in 

hydrological and environmental studies but has been recently 

introduced into the economic and other range of studies [17, 

18]. In [18], the study focused on out of sample forecasting of 

quarterly UK consumption series. Since that study, the works 

on periodic models have developed substantially. There have 

appeared several studies on evaluating forecasts from PAR 

models [16, 22, 11, 12, 8] and they vary in conclusions. 

It is well known that some of the economic time series 

display stochastic trends. Moreso, when dealing with 

stochastic seasonal time series data, seasonality may exist as 

well. Hylleberg stated that seasonality is the systematic 

although not necessarily regular, intra-year movement caused 

by changes of weather, calendar and timing of decisions, 

directly or indirectly through the production and 

consumption decisions made by agents of the economy [14]. 

Franses reviewed recent developments in econometric 

modeling of economic time series with seasonality [8, 9]. 

The prime focus was on economic models which incorporate 

explicit description of seasonal variation instead of moving 

from one variation using a seasonal adjustment method. The 

review centered on developments in seasonal unit root model 

and in-periodic parameter models, both in univariate and 

multivariate contexts. Franses and Paap stated that there are 

various approaches to modeling and forecasting seasonal 

time series [8-10]. According to them, one approach builds 

on the work of Box and Jenkins (1970) which relies on 

moving average models for double differenced time series 

called Seasonal Auto-regressive Integrated Moving Average 

(SARIMA) models. Second approach assumes that seasonal 

time series can be decomposed into trend, cycle, seasonal and 

irregular components [11]. Third approach questions the 

adequacy of the double differencing filter in SARIMA 

models and mainly addresses the issue of how many unit 

roots should be imposed in autoregressive models [14]. 

Finally, fourth approach assumes that seasonal variation is 

best described by allowing the parameters in an 

autoregression to vary with the seasons, that is, the so-called 

Periodic Autoregression (PAR). Lopez-de-Lacalle stated that 

when the component of time series trend and seasonality, do 

not evolve independently, traditional differencing filter may 

not be suitable, but can be handled using a seasonally varying 

parameters and a periodic differencing filter which is the 

periodic autoregressive time series models [15]. Ursu and 

Duchesne suggested that the method of moments based on 

Yule-Walker equations and the least squares method in the 

univariate case of (Franses and Paap, 2004) are efficient to 

estimate PAR models [21]. According to Hipel and McLeod, 

when the seasonal data and the model for each season are 

used rather than the annual data and the associated model, 

significant gain in parameter efficiency can be achieved [13]. 

It was indicated however that the main problem in PAR 

modeling relies on the number of parameters that need to be 

estimated which increases with the choice of the season for 

the data. Moving from quarterly surveys to monthly, data 

increases both the number of models and the number of 

parameters to be estimated. To obtain parsimonious models, 

it is of interest to study situations in which linear constraints 

on the parameters of a given season are introduced. Eugen 

and Jean-Christopher developed a robust modeling approach 

to identify and to estimate periodic autoregressive (PAR) 

model in the presence of additive outliers [5-7]. Since the 

least squares estimators are not robust in the presence of 

outliers, they suggested a robust estimator based on residual 

autocovariances. A genetic algorithm with Bayes information 

criterion (BIC) was used to identify the optimal PAR model. 

The method was applied to average monthly and quarter-

monthly flow data (1959–2010) for the Garonne River in the 

southwest of France. Results showed that the accuracy of 

forecasts was improved in the robust model with respect to 

the unrobust model for the quarter-monthly flows [22].  

2. Materials and Methods 

This chapter discusses the methods of data analyses. 

2.1. Materials 

This paper makes use of the secondary data extracted from 

the official website of the Australian Bureau of Statistics 

(ABS), (www.abs.gov.au). It consists of monthly historical 

data of the number of short term visitors in Australia from 

January 1998 to December 2017. 
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2.2. Methods 

The following models were used to analyze the data in this 

work. 

2.2.1. Periodic Autoregressive PAR Model 

Periodic autoregressive (PAR) models are meant for 
seasonally observed time series data, usually quarterly and 

monthly data. Considering a univariate time series { }rd sX +
which is periodic and is observed monthly for r  years, then 

such periodic time series { }rd sX + having zero mean and 

finite variance is said to have periodic autoregressive model 

of order p  with 0d >  and denoted by ( )dPAR p  if it 

satisfies the following formula, 

,1 1 ,2 2 ,rd s s rd s s rd s s p rd s p rd sX X X Xϕ ϕ ϕ ε+ + − + − + − += + + + +⋯  (1) 

,

1

p

rd s s i rd s i rd s

i

X Xϕ ε+ + − +
=

= +∑                   (2) 

Where, 2~ (0, )rd s sPWNε σ+ , d is the number of 

seasons, , , 1,2, ,s i i pϕ = ⋯ are the model’s parameters for 

seasons 1,2, ,s d= ⋯ , 0,1,2, , 1r N= −⋯  

The formula in (1) can also be written in autoregression 

operator of order p form as 

, ( )s i rd s rd sB X ε+ +Φ = ,                         (3) 

Where, 
2

, ,1 ,2 ,( ) 1 p
s i s s s pB B B Bϕ ϕ ϕΦ = − − − −⋯ . 

Note that the ( )dPAR p model considers different ( )AR p

models for different seasons, and the process described in (1) 
is non-stationary as the autocovariance and autocorrelation 
are time-varying within the year. However, the process can 
be converted to time-invariant form by rewriting the process 
in (1) as a d-dimensional vector autoregression VAR(P) 

model written as 

0 1 1 2 2r r r P r P rY Y Y Y− − −Φ = Φ + Φ + + Φ + ∈⋯        (4) 

Where, 1( , , )r rd rd dY X X+ + ′= ⋯  

0Φ  is ( )d d× lower triangular matrix with unit elements 

on the diagonal such that 

2,1
0

, 1 , 2 ,1

1 0 0 0

1 0 0

1d d d d d

ϕ

ϕ ϕ ϕ− −

 
 − Φ =
 
  − − − 

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋯

 

' , 1, 2, ,i s i PΦ = ⋯  are ( )d d× matrices 

1, 1, 1 1,( 1) 2 1,( 1) 1

2, 1 2, 2,( 1) 3 2,( 1) 2

,( 1) 1 ,( 1) 2 , 1 ,

id id i d i d

id id i d i d

i

d i d d i d d id d id

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− − + − +

+ − + − +

+ − + − +

 
 
 Φ =  
 
 − − 

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋯

 

and, r∈  is ( 1)d × vector white noise, 

1rd

r

rd d

ε

ε

+

+

 
 ∈ =  
 
 

⋮  

(4) gives rise to 

1 1 1 1
0 1 1 0 2 2 0 0r r r P r P rY Y Y Y
− − − −

− − −= Φ Φ + Φ Φ + + Φ Φ + Φ ∈⋯  (5) 

2.2.2. PAR model Parameter Estimation 

To estimate the parameters of a PARd(p) model, Franses 
and Paap recommend the use of seasonal dummy variables 

,s rd sD + which are equal to 1 for corresponding season s  and 

zero otherwise [10]. The parameters of the ( )dPAR p  model 

in (1) can be estimated by applying the regression model as 
below 

,1 , 1 ,2 , 2 , ,

1 1 1

d d d

rd s s s rd s rd s s s rd s rd s s p s rd s rd s p rd s

s s s

X D X D X D Xϕ ϕ ϕ ε+ + + − + + − + + − +
= = −

= + + + +∑ ∑ ∑⋯                          (6) 

Note that under normality of the error term rd sε + , the 

estimators of the parameters , , 1, 2, ,s i i pϕ = ⋯  and 

1, 2, ,s d= ⋯ are obtained from ordinary least square (OLS) 

method of estimation of (6) since ( )dPAR p  is an extension 

of ( )AR p . 

2.2.3. PAR Model Order of Selection 

Franses and Paap recommends the use of Bayesian 

Information Criterion (BIC) in combination with diagnostic 
tests on residual autocorrelation to select the order p of a 
periodic autoregressive model [8]. This is because when 
dealing with periodic time series model, it is reasonable to 
test for periodic serial correlation in the residuals. This can be 
achieved using a standard F-test for the significance of the 

sτ  parameter in the auxiliary regression model as below 

,1 1 ,2 2 , 1
ˆ ˆ
rd s s rd s s s rd s s p rd s p s rd sX X Xε α α α τ ε+ + − + − + − + −= + + + +⋯                                              (7) 

Where ˆ
rd sε +  are the estimated residuals of (6). 

The formula for the Bayesian Information Criterion is 

given as 

Bayesian Information Criterion: 

ˆ2 ln( ) ln( )BIC L k n= − +                    (8) 
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Where, k  = number of estimated parameters in the model, 

n  = number of observations, L̂  = estimated maximized 

value of the likelihood function of the model. 

2.3. Test for Periodic Variation in the Autoregressive 

Parameters 

Once a PAR model has been defined and its parameters 

estimated, it is necessary that the periodic variation 

(periodicity) in the autoregressive parameters to be checked. 

Following the model in (1), we perform an F-test for the null 

hypothesis of non-periodicity, 

,: s i iHo ϕ ϕ=  ∀  1, 2, ,s d= ⋯  and 1, 2, ,i p= ⋯ . 

Boswijk and Frances (1996), gave the likelihood ratio LR test 
for the null hypothesis as 

0 1[ln( ) ln( )]LR n RSS RSS= −                 (9) 

Where, n  = number of observations, 0RSS  and 1RSS  = 

residual sums of squares for ( )AR p  and ( )dPAR p  respectively. 

When the null hypothesis is accepted an ( )AR p  is 

estimated, while if it is rejected, a ( )dPAR p  model is fitted. 

It is worthy to note that when k  seasonal intercepts are 

included in the model, the statistic follows an F-distribution 

with (3 , (1 ))p n k p− +  degrees of freedom. 

2.4. Test for Unit Root and Periodic Integration 

The characteristic matrix polynomial ( )zΦ  of VAR(P) of 

(4) is defined as ( ) 2
0 1 2

p
pz z z zΦ = Φ − Φ − Φ − − Φ⋯ . The 

VAR(P) process Yr is stationary provided that the root of the 

characteristics equation are outside the unit circle in 
modulus, that is, 

( ) 0zΦ =                                   (10) 

On the other hand, the process Yr can be said to be 
integrated if (10) has a unit root, that is, if it is the case 

1 2 3. . 1dα α α α =⋯ , that is, 

1

1

d

i

i

α
−

=∏  assuming α ’s is used 

to represent ϕ ’s in the characteristic equation (10), using 

(1)dPAR  for instance. 

The restriction is satisfied in two particular cases. The first 

case is when ,1 2 3, , , , dandα α α α⋯  are either 1 or -1, then 

the model is known as a PAR process for a I(1) time series, 
PARI with long run seasonal unit root 1, or the seasonal unit 
root -1. The second case is when the restriction 

1 2 3. . 1dα α α α =⋯  is fulfilled, the model is known as a 

periodically integrated AR process, PIAR. 

To test the above restriction, to see whether the process is a 

PARI process with the long run seasonal unit root 1, or the 

seasonal unit root -1, or a PIAR process, we first estimate the 

unrestricted equation. 

,1 , 1

1

d

rd s s s rd s rd s rd s

s

X D Xϕ ε+ + + − +
=

= +∑            (11) 

Then, by imposing the above restriction, we have the 

following restricted equation 

( )
1

1

,1 , 1 1 2 1 , 1

1

.

d

rd s s s rd s rd s d d rd s rd s rd s

s

X D X D Xϕ α α α ε
−

−
+ + + − − + + − +

=

= + +∑ ⋯                                         (12) 

which can be estimated by non-linear least squares. 

The null hypothesis to be tested is 

,: 1s iHo ϕ =  for 1, 2, , ( 1)s d= −⋯  or ,: 1s iHo ϕ = −  for

1, 2, , ( 1)s d= −⋯  

and the likelihood ratio test statistic in (9) is used to test the 

null hypothesis where 0RSS  and 1RSS  = residual sums of 

squares for unrestricted model and restricted model 

respectively. 

When the null hypothesis is accepted PARI process is 

fitted, while if it is rejected, a PIAR process is fitted. 

2.5. Diagnostic for the Fitted Model 

We perform the diagnostic checking on the residuals of the 

fitted model by carrying out seasonal heteroscedasticity test 

and other complementary test such as Ljung-Box test for 

autocorrelation and Jarque-Bera test for normality [15, 16]. 

This is done to validate that the fitted model is appropriate 

and it consists of the following. 

2.5.1. Seasonal Heteroscedasticity Test 

Thomas and William gave the likelihood ratio LR test that 

corresponds to a standard F-test for the seasonal 

heteroscedasticity null hypothesis as 

0 1
ˆ ˆ2(ln ln )LR L L= − −                      (13) 

Where, 0L̂ = maximized likelihood value from estimation 

of the restricted model, and 1L̂ maximized likelihood value 

from estimation of the unrestricted model [22]. 

2.5.2. Autocorrelation Test 

Ljung and Box recommend a test statistic which check 

whether the estimated residuals of the model behave 

approximately like a white noise [16]. The test statistic is as 

given below: 

1

1
ˆ( ) ( 2) ( )

l

k

Q k n n r k
n k=

= +
−∑                     (14) 



100 Ezra Precious Ndidiamaka et al.:  Modelling Tourism in Australia Based on  
Periodic Autoregressive Time Series Models 

2.5.3. Normality Test 

The Jarque and Bera is a goodness of the fit test of whether 

the residual estimated has the skewness and kurtosis 

matching a normal distribution and it is given as: 

JB = ( )22 1
3

6 4

n
S k
 + − 
 

                         (15) 

Where, n  = number of observations, S = skewness, k = 

kurtosis [15]. 

Forecasting 

Once the parameters in PAR models have been estimated, 

one can use the resultant model for forecasting. Forecasting 

with PAR models starts the same way as with standard AR 

models [9]. Generally, it is more convenient to use vectors 

representation given in (5) to compute forecasts and forecast 

error variances. 

The forecast for the one year ahead is given by 

( ) ( )1 1 1
1 1 0 1 0 1 0 1

ˆ
r r r r rY E Y E Y Y− − −
+ + += = Φ Φ + Φ ∈ = Φ Φ   (16) 

The forecast error is 1
0 1

ˆ
r r rY Y

−
+− = Φ ∈  and the covariance 

matrix of the forecast error is ( )2 1 1
0 0( )σ − − ′Φ Φ  

Likewise, the forecast for two years ahead is given by 

( ) ( )1 2 1 1 1 1 2
2 2 0 1 0 2 0 1 0 1 0 1

ˆ ( ) ( ) ( )r r r r r rY E Y E Y Y− − − − −
+ + + += = Φ Φ + Φ ∈ + Φ Φ Φ ∈ = Φ Φ                                 (17) 

The forecast error is 1 1 1
0 2 0 1 0 1( )r r
− − −

+ +Φ ∈ + Φ Φ Φ ∈  and the 

covariance matrix for the forecast error is given by 

( )2 1 1 1 1 1 1
0 0 0 1 0 0 1 0( ) ( )( )σ − − − − − −′ ′Φ Φ + Φ Φ Φ Φ Φ Φ  

3. Results Discussion 

This section consists of presentation of results and 

interpretation. 

Firstly, the researchers presented the time plot for the monthly 

tourism data, in order to visualize the pattern the data exhibited 

over the years under consideration (See figures 1 and 2). 

 

Figure 1. Time plot of Australian tourism data from 1998 to 2017. 

 

Figure 2. Correlogram of Australian tourism data from 1998 to 2017. 

From the above figures, it was observed that the components 

in the tourism data (trend and seasonality) do not evolve 

independently. These suggest that periodic autoregressive time 

series models are suitable to model the tourism data. Periodic 

autoregressive PAR model was therefore fitted. The appropriate 

lag order of the PAR models was also determined using the BIC 

criteria in combination with Likelihood ratio test. The result is 

shown on Table 1 below. 

Table 1. Periodic autoregressive order selection. 

Criterion 
Periodic autoregressive order 

1 2 3 4 

BIC -661.9366 -664.2323 -627.7320 -587.4453 

F( 1, 0p sϕ + = ) 5.6408 2.2593 1.8539 1.2022 

p-value 0.0000 0.0107 0.0431 0.2855 

From the result on Table 1, the p-value revealed that orders 

1, 2 and 3 were significant based on the F-statistic value at 5-

percent significant level. Choosing the periodic 

autoregressive order among the significant lags, the BIC 

criterion having the lowest value of lag order was chosen. 

This implies that the order of the periodic autoregressive 

process for the tourism data is 2. 

Having identified the order for the PAR model suitable for 

the data, the periodicity in the autoregressive parameters of 

the model was verified to ensure there is periodic variation or 

periodicity before suggesting that PAR(2) is suitable. The 

periodic variation test result is summarized below for PAR 

with seasonal intercept and both seasonal intercept and 

seasonal trend. 

 

R console: See [19]. 

Figure 3. Test result for periodicity in the autoregressive parameters. 

The result above showed that the periodicity was not 

rejected, meaning that a periodic model fits better to the 

tourism data rather than an autoregressive model, which is 

restrained to seasonally constant parameters. 

The next step was to carry out property test to verify 

whether a unit root exists. If a unit root does not exist, then 
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the periodic autoregressive process is stationary. On the other 

hand, if a unit root exists, then it suggests that the process 

will be either periodic autoregressive process for I(1) PARI 

or periodic integrated autoregressive PIAR to take account of 

the unit root. 

 

R console. 

Figure 4. Result of LR test for a single unit root in a PAR model of order 2. 

According to the LR test for a single unit root in a PAR 

model of order 2 above, the result showed that a single unit 

root cannot be rejected. This implies that a single unit root 

exists. To take account of it, it is worth verifying whether the 

parameters can be either 1 or -1. This can be achieved by 

testing for a parameter restriction in a PAR model. If the 

hypothesis is accepted PARI process will be fitted, otherwise 

PIAR process will be appropriate. 

 

R console: See [19]. 

Figure 5. Result of test for a parameter restriction in a PAR(1). 

According to the result, the hypothesis was rejected, hence, suggesting PIAR process to be appropriate for the data. Below is 

the graphical presentation of the periodical differenced data and summary of the estimated parameters of the PIAR(2) model. 

 

R console: See [19]. 

Figure 6. The coefficiients for PIAR model of order 2. 
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Diagnostic checking to validate the model fitted for the data was performed considering seasonal heteroscedasticity, 

autocorrelation and normality tests. 

 

R console. 

Figure 7. Result of test for seasonal heteroscedasticity. 

The results of the diagnostic checking showed that 

seasonal heteroscedasticity was rejected. The Jarque-Bera 

normality test validates the normal distribution of the 

residuals; the Box-Ljung test for autocorrelation validates the 

presence of no autocorrelation of the residuals. All these 

verify that the model is adequate for the tourism data, hence, 

it can be used for forecasting. 

4. Conclusion 

Australian tourism was modeled using periodic 

autoregressive model. This was achieved by fitting a periodic 

autoregressive model, selecting the lag order of the model, 

testing for periodic variation or periodicity in the data, 

verifying if there is single unit root and periodic integration. 

From the results, it was revealed that the class of periodic 

autoregressive model called periodic integration 

autoregressive of order 2 PIAR(2) model is suitable for 

modelling Australian tourism. Based on this finding, it is 

concluded that periodic autoregressive time series model can 

be used to generate reliable forecast for Australian tourism 

data, and this could be attributed to the stochastic nature of 

the trend and seasonality associated with the time series data. 

However, we recommend that for further studies. 
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